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ABSTRACT: Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation,
the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The
application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific
organs or cell types, thereby maximizing therapeutic efficacy. In the realm of genome editing, LNPs have emerged as a potent vehicle
for delivering CRISPR/Cas components, offering significant advantages such as high in vivo efficacy. The incorporation of machine
learning into the optimization of LNP platforms for gene therapeutics represents a significant advancement, harnessing its predictive
capabilities to substantially accelerate the research and development process. This review highlights the dynamic evolution of LNP
technology, which is expected to drive transformative progress in the field of gene therapy.
KEYWORDS: lipid nanoparticles, gene therapy, machine learning

1. INTRODUCTION
The development of effective intracellular delivery methods
has been a significant challenge in the field of gene
therapeutics. Gene editing agents are typically delivered in
vivo using either viral or nonviral approaches. Among these,
adeno-associated virus (AAV) is the most widely used vector.
Its popularity stems from its high efficiency in treating
conditions that affect the eye, liver, muscles, and central
nervous system.1 However, several limitations may constrain
its biomedical applications. First, AAV’s limited packaging
capacity presents a challenge for the inclusion of large gene
editing agents.2 Second, the prolonged expression of cargo by
AAV in transduced cells could potentially result in off-target
editing, which poses a risk in the context of genome
engineering.3 Third, the range of targetable tissues for AAV
is relatively limited,1 and it may elicit an immune response,
carrying the risk of viral genome integration.4 Considering
these challenges, nonviral delivery systems are emerging as
viable alternatives for gene-editing therapies.

Lipid nanoparticles (LNPs) represent a highly promising
nonviral delivery platform for a variety of therapeutic nucleic
acids, including short interfering RNA (siRNA), mRNA
(mRNA), single-guide RNA (sgRNA), and plasmid DNA
(pDNA).4 The synthetic nature of LNPs enables precise
control through the adjustment of lipid composition and
manipulation of other parameters, and they also have the
potential for targeted delivery to a wide range of cells and
tissues, either by utilizing their inherent surface characteristics
or through the strategic conjugation of specific ligands.5−8
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Machine learning has the potential to revolutionize the
design of LNPs by predicting the efficiency of novel
formulations and providing insights into delivery mechanisms.
This capability allows for the rapid screening of a wide array of
LNP formulation candidates. In this review, we provide an
overview of the formulation and fabrication processes of LNPs,
along with targeted delivery strategies. We explore the
application of LNPs in CRISPR/Cas therapies and discuss
the optimization of LNPs facilitated by machine learning. The
review highlights the advancements and the untapped potential
of this LNP delivery system.

2. FORMULATING LNPS FOR THERAPEUTIC GENOME
EDITING
2.1. Structures and Components of LNPs. LNPs

typically consist of four fundamental components: ionizable
lipids, polyethylene glycol (PEG)-lipids, phospholipids, and
sterols (as shown in Figure 1A,B). This formulation has been
successfully employed in the FDA-approved siRNA therapy,
Onpattro, and has been extensively used in mRNA vaccines
during the COVID-19 pandemic.
2.1.1. Ionizable Lipid. Classical ionizable lipids consist of a

hydrophilic amine headgroup, a linker, and a hydrophobic tail
domain. The amine headgroup is ionizable, exhibiting positive
charges below its pKa, while the charge decreases when the pH
exceeds the pKa due to deprotonation. Most LNP studies focus
on the apparent pKa of the LNP rather than the intrinsic pKa of
the ionizable lipid, as the apparent pKa reflects the ionization
status of all molecules within the LNP.12 A previous study
reported that the theoretical pKa of individual ionizable lipid is
2−3 units higher than the apparent pKa of LNP containing the
corresponding ionizable lipid.13 For reading convenience, the
term “pKa value” mentioned in the following section refers to
the apparent pKa of LNP unless otherwise specified. To
enhance the design of LNPs, it is essential to engineer

ionizable lipids to exhibit pKa below 7. This approach endows
LNP with minimal charges under physiological conditions (pH
≈ 7.4), reducing overall toxicity and blood clearance after
intravenous (IV) injection. In an acidic environment, ionizable
lipid will be cationic, which is pivotal for encapsulating the
anionic nucleic acid cargo. The positive charges displayed on
ionizable lipid also facilitates the release of cargo from the
acidic endosomal compartment by disrupting the anionic
endosomal membrane.
However, lipids with a pKa value that is too low may exhibit

insufficient interactions with the negatively charged endosome
lumen.14 Studies have shown that ionizable lipids with a pKa
below 5.5 are ineffective for liver-specific siRNA delivery.15

Apart from pKa, the efficacy of LNPs is influenced by their
tendency to form nonbilayer structures, such as the inverted
hexagonal phase (HII). Ionizable lipids with high potency,
exemplified by DLin-KC2-DMA (KC2, pKa = 6.68), which
possess a ’cone-shaped’ molecular structure, have demon-
strated the ability to induce HII phase transformation in the
endosomal membrane. This property results in superior in vivo
efficacy compared to conventional lipids like DLinDMA.16 The
optimal pKa range for IV delivery systems is between 6.2 and
6.5, highlighting DLin-MC3-DMA (MC3, pKa = 6.44) as the
most potent lipid for hepatocyte gene silencing.17 MC3 has
emerged as a benchmark ionizable lipid in a variety of nucleic
acid delivery systems, including the commercial product
Onpattro.14

The route of administration also impacts the efficiency of
LNPs in vivo. Studies have indicated that while MC3 is
superior for IV injection, KC2 exhibits higher efficacy in vitro
and in vivo following intramuscular (IM) injection due to its
’cone-shaped’ structure.13 However, LNPs formulated with
MC3 have been observed to produce extended local and
systemic exposure following IM administration, potentially
leading to adverse clinical effects.18 Moderna’s LNP, composed

Figure 1. (A) LNP consists of four lipid components that enable encapsulating varied anionic cargos. (B) Lipid molecules applied in LNP
formulation. (C) Two-inlet microfluidic device with herringbone geometry.9 (D) Three-inlet microfluidic device with herringbone geometry
encapsulating siRNA by LNP.10 (E) The three-inlet microfluidic device used to produce RNP-LNP efficiently preventing aggregation.11
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of lipid SM-102 (Lipid H, pKa = 6.68), has shown improved
biodegradability and mRNA expression compared to MC3-
based LNPs after IM injection.18 This LNP has been utilized in
the vaccine Spikevax.
pH-responsive polymer−lipid hybrid materials, such as 7C1

(lipid tail-modified poly(ether imide), pKa ∼ 5.0) can
specifically target siRNA delivery to lung endothelial cells.19

Bioreproducible lipids provide a viable alternative for the
formulation of biodegradable LNPs, functioning via a distinct
mechanism compared to conventional ionizable lipids. These
reproducible LNPs remain stable in physiological conditions,
and yet they undergo degradation in the cytosol through a
disulfide bond exchange mechanism, promoting the intra-
cellular release of gene editing agents.20 It has been reported
that LNPs based on reproducible lipids were more efficient in
delivering Cas9 mRNA and sgRNA than those based on DLin-
MC3-DMA.21

2.1.2. PEG-lipid. The incorporation of PEG-lipids onto the
LNP surface can shield the positive charge, extending the
circulation lifetime and preventing aggregation through steric
hindrance.22 PEG-lipids consist of a PEG chain conjugated to
an alkyl chain via phosphate, glycerol, or other linkers.23 In
nebulized LNP therapies, manipulating the quantity and
structure of PEG-lipids could improve LNP stability thereby
enhancing the delivery efficiency.24 For IV-administered LNPs,
PEG-lipids dissociate over time, leaving the ionizable LNP
available for transfection.25 In vitro studies have shown that
PEG-lipids with shorter alkyl chains dissociate more rapidly,
allowing for quicker LNP activation and cell association.26 On
the other hand, in vivo research reported that LNPs with
shorter alkyl chains are cleared more quickly from the
bloodstream, whereas longer chains enhance stability and
facilitate bypass of the first-pass organs (e.g., liver, spleen, and
lung) to reach targeted tumor sites.25 However, the long alkyl
chains may not be advantageous for targeted delivery systems,
as they can hinder the formation of the protein corona.27 This
inhibition could potentially compromise the specificity of LNP
delivery.
2.1.3. Sterol. Sterols are vital in mediating the structure of

LNPs and enhancing encapsulation efficiency,28 where
cholesterol is the most common choice in LNP formulation.
Cholesterol stabilizes LNPs by occupying interlipid tail spaces
and maintaining a balance between fluidity and condensation
of the lipid bilayer.29 Other naturally occurring sterols are also
occasionally incorporated into LNP formulations. For instance,
β-sitosterol has demonstrated potential in enhancing endo-
somal escape and facilitating mRNA transfection in natural
killer cells.30

2.1.4. Phospholipid. Phospholipids are strategically posi-
tioned on the LNP surface to promote bilayer phase
formation31,32 and mediate RNA loading into LNPs.33 1,2-
Stearoyl-sn-glycerol-3-phosphocholine (DSPC) and 1,2-Dipal-
mitoyl-sn-glycerol-3-phosphoethanolamine (DOPE) are the
most widely used phospholipids in LNP formulations.
Anderson’s lab found that DOPE is more efficient than
DSPC in mRNA delivery due to its tendency to form HII
phases upon fusion with the endosomal membrane, which
destabilizes the membrane and facilitates endosomal escape.34

Recently, the optimization of phospholipids has emerged as a
promising method for enhancing LNP delivery systems. LNPs
formed with 1,2-Dioleoyl-sn-glycerol-3-phosphocholine
(DOPC) exhibited higher efficacy than both DSPC and
DOPE. DOPC’s quaternized amine headgroup and unsatu-

rated lipid tail promote endosomal escape through strong
proton sponge effects and increased membrane fluidity,
respectively.21 The phospholipid 9A1P9, demonstrated 40- to
965-fold higher in vivo efficacy than DOPE and DSPC,
highlighting the importance of HII phase formation in
phospholipid efficacy.35

2.2. Fabrication of LNPs via Microfluidic Systems. The
LNP fabrication studies involved the encapsulation of nucleic
acids by trapping siRNA within preformed liposome vesicles
through rapid mixing processes.36 Subsequently, stepwise
mixing technology was developed, which involved the
combination of DNA aqueous solutions with lipid ethanol
solutions in a T-shaped mixing chamber, followed by a
stepwise dilution.37 However, these methods often resulted in
LNPs with high polydispersity and inconsistent batch-to-batch
reproducibility, primarily due to uncontrolled mixing con-
ditions.10

Microfluidics has emerged as a technological advancement
for the fabrication of liposomes and LNPs. The scalability of
this manufacturing process is enhanced through the paralleliza-
tion of mixing devices. Critical parameters for controlling LNP
formation include the residence time within the mixing
chamber and the geometrical design of the microfluidic
mixer.9 Droplet microfluidic devices utilize two immiscible
fluids to fabricate liposome vesicles, where water is pumped
into an oil-surfactant mixture flow, and vesicles are formed due
to shear forces perpendicular to the oil-surfactant flow
generated by the water.38 Microfluidic system based on the
hydrodynamic focusing of two miscible fluids (e.g., isopropanol
and acidic aqueous buffer) was capable of producing smaller
liposomes compared to the droplet microfluidic devices.39,40

Liposomes formed along the aqueous/alcohol interfacial phase
where the lipid solubility was reduced, which induced the self-
assembly of lipids into planar lipid bilayers. These bilayers
subsequently closed into spherical vesicles due to surface
tension effects.40 After LNP formation, dialysis is often
employed to remove residual ethanol and achieve pH
neutralization. As the pH is adjusted to neutral, the fusion of
small vesicles into larger vesicular structures can be observed.31

The incorporation of a staggered herringbone pattern into
microfluidic devices has been shown to increase throughput, a
design feature implemented in many microfluidic LNP
formation systems (Figure 1C).9 The herringbone geometry
within the microfluidic channel induces chaotic flow, leading to
rapid and effective mixing of the components and homoge-
neous nucleation of nanoparticles. While most microfluidic
systems are designed with two inlets, LNPs have also been
prepared using three-inlet devices to enhance functionality.
Suzuki et al. developed a microfluidic device featuring a third
inlet that introduces an aqueous buffer at the junction of the
other two inlets, aiming to prevent the aggregation of
ribonucleoprotein (RNP) cargo (Figure 1E).11 Anderson’s
laboratory further refined the microfluidic system by adding an
additional inlet for the injection of aqueous buffer post-LNP
formation, which not only neutralized pH but also mitigated
LNP aggregation (Figure 1D).10

2.3. Tailoring LNP Formulation Parameters. 2.3.1. Size.
The LNP size and its distribution are critical determinants for
efficient gene delivery. Particle size significantly influences
tissue penetration, clearance rates, and the mechanism of
endocytosis. LNPs with a diameter of approximately 120 nm
are primarily internalized through nonselective fluid-phase
endocytosis, while smaller LNPs (less than 80 nm) might be
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internalized via receptor-mediated endocytosis.41 This size-
dependent internalization pathway is crucial for the cellular
uptake and subsequent intracellular trafficking of LNPs. There
is a negative correlation between LNP size and permeation,
with the optimal size being dependent on the target site. For
hepatocyte targeting, LNPs should be smaller than liver
endothelial fenestrations (100−150 nm), and smaller sizes
correlate with increased transfection efficiency.42 LNPs with
sizes similar to the fenestrations risk being taken up by liver
sinusoidal endothelial cells (LSECs), potentially hindering
their interaction with hepatocytes.43 For tumor-targeted
delivery, sub-100 nm particles are preferred due to the smallest
tumor model pore size being 100−200 nm.44 However, very
small LNPs, such as those around 30 nm, may not achieve high
potency despite their enhanced permeability; they are cleared
rapidly from the bloodstream and exhibit reduced in vivo
efficacy due to rapid lipid dissociation and a limited nucleic
acid payload.27,45,46

Microfluidic devices offer precise control over the size of
LNPs. A rapid flow rate typically results in smaller LNPs, since
it allows little time for self-assembling planar lipid fragments to
grow before closing into the vesicle.10 Elevating aqueous/
alcohol flow rate ratio was also reported to reduce the LNP
size.47 Importantly, the geometry of the microfluidic channel,
specifically its cross-sectional area, influences the size
distribution of LNPs; a deeper channel with a higher aspect
ratio promotes a more uniform LNP size.48 The minimum size

of LNPs generated by microfluidic devices is believed to be
contingent upon the lipid-PEG content, which impedes the
fusion of smaller LNPs.31 An increased proportion of lipid-
PEG content lowers the minimum achievable size, with the
smallest reported LNP size being around 20 nm.9

2.3.2. Loading Efficiency. Loading efficiency is a critical
determinant in LNP delivery systems, as it governs the lipid
coassembly process during LNP formation.49 This efficiency
can be assessed by the weight ratio of lipid to mRNA or by the
molar ratio of amino lipid nitrogen to nucleic acid phosphate
(N/P). An enhanced loading efficiency can lead to a reduction
in the required lipid dose, which is beneficial in minimizing
overall toxicity, as excessive lipid intake may result in animal
weight loss and even be lethal.42 Nevertheless, it is not always
advantageous to maximize nucleic acid loading, as LNPs with a
lower N/P ratio may exhibit reduced positive charge at neutral
pH, potentially impairing endosomal release.13 For mRNA
delivery, the optimized weight ratio between C12−200 and
mRNA was10:1, with no significant change in vivo efficacy
observed with increasing ionizable lipid ratio,34 and a similar
trend was also observed in the mRNA-LNP system composed
of 5A2-SC8.50 The N/P ratio has also been reported to
significantly affect LNP morphology and charge status.13

2.3.3. Charges. The charge of LNPs is a critical parameter
that significantly influences their transfection efficiency and in
vivo delivery routes. The charge can be adjusted by
manipulating the N/P ratio or by altering the chemical

Figure 2. LNP targeted delivery enabled by active or passive targeting.
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properties of the lipid components. Increasing the positive
charges of nanoparticles leads to the enhanced affinity toward
anionic cellular membranes, potentially facilitating the cellular
uptake and improve delivery efficiency. For example, LNPs
with a reduced negative charge may exhibit greater in vivo
potency following IM administration.13 Adding permanent
cationic lipid 1,2-Dioleoyl-3-trimethylammonium-propane
(DOTAP) into LNP formulation also promoted the in vitro
delivery efficiency of siRNA.51

Tailoring the LNP charge can achieve both cell-specific and
tissue-specific targeting. Anionic LNPs, which are generated by
replacing zwitterionic phospholipids with the anionic phos-
pholipid 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG),
display strong negative charges (zeta potential ∼ −20 mV)
enabling preferential targeting to liver LSECs.52 In addition,
the selective Organ Targeting (SORT) strategy controls LNP
charges by adding a fifth component (permanent cationic lipid,
permanent anionic lipid, and ionizable lipid) to LNP, achieving
targeted delivery to the lung, spleen, and liver.53 In the lung
SORT strategy, DOTAP was selected as the most effective
permanent cationic lipid to formulate LNP for its superior
transfection efficiency, high targeting specificity, and relatively
low toxicity.54 Lung SORT LNP assists in gene editing in
multiple cell types in the lung including stem cells enabling
long-term edits for 22 months.55 Su et al. optimized the lung
SORT strategy by developing a three-component LNP
formulated by ionizable lipid, DOTAP, and PEG-lipid,
showing the reduced accumulation in the liver and enhanced
specificity to the lung potentially caused by the removal of
cholesterol.56 Additionally, spleen SORT LNP could deliver
chimeric antigen receptor (CAR) mRNA to splenic T cells
following IV injection to produce CAR T cells in situ.57 Future
optimization of the SORT LNP system could benefit from
decreasing the off-targeted delivery, reducing the toxicity of
SORT molecules, and exploring new target sites.
Zeta potential can detect the net charge of LNP, while pKa

may be used to evaluate the surface charge.12 It is important to
note that nonliver targeted LNPs often exhibit pKa values
which is out of the optimized pKa range for hepatocyte
delivery, highlighting the significant impact of LNP pKa on
delivery mechanisms. For instance, in the SORT system, lung-
targeted LNPs display a higher pKa (>9), while spleen-targeted
LNPs have a lower pKa (2−6,58 5.88−6.5557). The PEI-based
LNP 7C1, designed for endothelial cell delivery, has a pKa of
approximately 5.0, which is lower than the typical pKa range
(6−7) established for liver delivery.59 Low pKa value has also
been reported in spleen-targeted LNP systems formed by
zwitterionic phospholipidated polymers.60 Understanding the
relationship between LNP pKa and its targeted delivery could
be essential for the guidance of future LNP targeting systems.

3. TARGETED LNP SYSTEM DESIGN
Designing targeted LNP systems is crucial for gene therapy, as
it enables the specific and efficient delivery of therapeutic
agents to designated cells or tissues within the body (as
depicted in Figure 2). LNPs tend to accumulate in the liver
even in the absence of specific targeting ligands, as studies have
indicated that approximately 90% of standard LNPs are
localized to the liver within 1 h post IV administration.42

Targeted LNP strategies can lead to increased efficacy and
reduced side effects compared to nontargeted delivery
approaches. Various administration routes, including inhala-
tion, intratumoral, intradermal, IV, and IM injections,

significantly influence the targeting of LNPs to specific
sites.61 This section concentrates on the targeted delivery of
LNPs facilitated by their intrinsic properties.
3.1. Active Targeting. Active targeting of LNPs is

achieved through surface modification techniques. By con-
jugating targeting ligands to the LNP surface, these nano-
particles can be guided toward specific cell types, which fosters
the advancement of targeted delivery platforms for a range of
diseases. Targeting ligands, such as antibodies, sugars, and
peptides, are typically attached to the distal end of PEGylated
lipids or other polymeric lipids. This attachment facilitates
direct interactions between the LNPs and the cell membrane
without being shielded by the PEG layer.62

Antibody conjugation can achieve the targeted delivery to
immune cells and stem cells. FIB504, a monoclonal antibody
targeting the β7 integrin, was covalently attached to liposomes.
Given the high expression of β7 integrin in gut mononuclear
leukocytes, FIB504-modified LNPs were able to specifically
target leukocytes, delivering siRNA to silence CyD1 and
mitigate intestinal inflammation.63 Anti-CD4 monoclonal
antibody was chemically conjugated to LNPs, enabling specific
siRNA delivery to CD4+ T cells.64 Their studies reveal that
among leukocyte-rich organs (blood, spleen, lymph nodes, and
bone marrow), the blood showed the highest LNP-cell binding
affinity, while the lymph nodes exhibited the lowest binding.
Anti-CD5-modified LNPs were utilized to deliver mRNA for
the production of CAR T cells.65 Additionally, LNPs
covalently modified with anti-CD117 were found to effectively
target hematopoietic stem cells (HSCs) in the bone marrow,
offering a promising method for gene therapy for monogenic
disorders and diseases affecting nonhematopoietic tissues.66

While conventional chemical conjugation strategies are
widely utilized in LNP active targeting strategy, the binding
efficacy could be compromised as the conjugated antibodies
might be damaged during the chemical process. Additionally,
chemically attached ligands are randomly oriented on the LNP
surface, which means only a subset of them may be
functional.67 To address these limitations, the methodologies
for targeted delivery have been developed, where bioactive
ligands are attached to LNPs via noncovalent interactions. Dan
Peer’s laboratory pioneered the ASSET (Antibody-SS-Enabled
Trigger) system, which allows for the conjugation of antibodies
to LNPs through a recombinant protein approach.67,68 In the
ASSET system, the lipoprotein is a key component that
contains a lipidation peptide domain for incorporation into
LNPs and a scFv domain that interacts with the Fc region of
the targeting antibody. The team also explored a supra-
molecular methodology using a secondary antibody as a linker
between the LNP surface and the functional domain of the
primary antibody, creating a conformation-sensitive targeting
system.69 This system allows integrin binding domains on
LNPs to recognize integrin α4β7 specifically in its high-affinity
conformation.
Bioactive peptides have also emerged as cost-effective

targeting ligands for LNP modification compared to antibod-
ies. For example, a retina-specific peptide has been conjugated
with a PEG-lipid of LNP, where the modified LNPs were
capable of delivering mRNA to the neural retina, offering a
promising therapeutic approach for treating inherited blind-
ness.70 Active targeting mechanisms can also be employed to
achieve specific hepatic cell delivery within the liver. Standard
LNPs, such as MC3, can be delivered to all major liver cell
types, including hepatocytes, Kupffer cells (KCs), and hepatic
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endothelial cells.71 The engineering of LNP surfaces with N-
acetylgalactosamine27 and mannose43 moieties has also been
shown to enhance targeted delivery to hepatocytes and LSECs,
respectively.
3.2. Passive Targeting. Active targeting mechanisms can

enable cell-specific delivery systems for LNPs, but achieving
tissue-specific delivery beyond the liver through the use of
targeting ligand conjugation alone is challenging. Passive
targeting mechanisms, on the other hand, can regulate tissue-
specific targeting by adjusting the physicochemical properties
of LNPs, potentially altering the protein corona. The delivery
of classical LNPs to hepatocytes is facilitated by the interaction
of apolipoprotein E (ApoE) with the low-density lipoprotein
receptor (LDLr). LNPs typically form an ApoE-rich corona
during circulation, which then binds to the LDLr that is
abundantly expressed on hepatocyte surfaces.72 It has been
found that the corona of DOTAP-contained lung SORT LNP
is enriched in vitronectin, leading to the increased uptake by
lung cells that express the vitronectin receptor.55

It is worth noticing that the distinct surface chemistries of
LNPs may lead to unique protein corona formations, and
variations in the protein corona are thought to direct LNPs to
different organs.53 For example, LNPs based on the lipid 5A2-
SC8 have shown high efficacy in targeting liver hepatocytes;
however, minor alterations in lipid chemistry can result in the
absence of ApoE in the protein corona, leading to delivery
specificity for KCs instead.73 Similarly, cationic LNPs74 and
anionic LNPs72 have failed to target hepatocytes due to the
lack of ApoE-based targeting.

4. APPLYING LNPS IN CRISPR/CAS GENE EDITING
SYSTEMS
4.1. CRISPR/Cas Gene Editing Tools. CRISPR-Cas

technology is revolutionizing the field of life sciences with its
potentially transformative impact on biotechnology, agricul-
ture, and medicine. Cas9 protein can cleave DNA in
mammalian cells, creating double-strand breaks (DSBs) guided
by CRISPR RNA in the presence of protospacer-adjacent
motifs (PAMs).75 Subsequently, it was successfully applied the
CRISPR/Cas9 system for gene editing in human and mouse
cells.76 The CRISPR/Cas9 system consists of a sgRNA that
directs the gene-editing machinery to the target DNA strand,
with the Cas9 protein responsible for the DNA cleavage. DNA
can be repaired primarily through nonhomologous end joining
(NHEJ) or homology-directed repair (HDR) pathways.
CRISPR-Cas systems have been categorized into two classes,

each further divided into six types and various subtypes,
distinguished by their unique cas genes. Class 1 systems (types
I, III, and IV) utilize multi-Cas protein complexes for
interference, while class 2 systems (types II, V, and VI)
achieve interference through a single effector protein. The
effector proteins (Cas9, Cas12a, and Cas13) are involved in
crRNA maturation in the three well-characterized examples of
class 2 interference (type II, type V-A, and type VI), leading
them to be prebound to the guide RNA before selecting and
cleaving the target.77 Cas13 proteins can be engineered for
mammalian cell RNA knockdown and binding.78 Based on
CRISPR-Cas13, researchers have developed abundant of new
RNA editing tools, including Cas13 nucleases,79 REPAIR
(RNA Editing for Programmable A to I Replacement)80 and
RESCUE (RNA Editing for Specific C-to-U Exchange)81 RNA
base editors, and RNA modification tools.

There are currently four classes of CRISPR-Cas-derived
genome editing agents available for modifying genomes in
experimental systems, including nucleases, base editors,
transposases/recombinases, and prime editors (Table 1).

Some of these agents have quickly transitioned into clinical
study. For example, the CRISPR-Cas9 system is widely used
for producing nuclease-edited CAR-T cells.82 Base editors
(BEs) offer a solution to the limitations of nucleases by
allowing precise gene correction through single-nucleotide
conversions in genomic DNA without the need for DSB.83

These BEs consist of DNA-modifying enzymes fused to
programmable DNA-binding domains, and various types of
BEs have been developed, including adenine base editors
(ABE), cytosine base editors (CBE), and other types. BEs have
been utilized in therapeutic settings for a variety of ex vivo and
in vivo gene editing applications aimed at correcting disease-
causing point mutations or introducing single-nucleotide
variants to prevent or alleviate disease phenotypes.84 Although
BEs have the potential to correct most pathogenic single-
nucleotide polymorphism (SNP), they are limited in their
ability to perform all possible single-nucleotide conversions
and cannot facilitate targeted insertions or deletions. In
response to these constraints, prime editors (PEs) were
developed allowing for the programmable installation of single-
nucleotide conversion, small insertion, small deletion, or a
combination thereof without creating DSB.85 PEs consist of a
reverse transcriptase fused to a Cas9 nickase domain and
utilize an engineered prime editing guide RNA (pegRNA) to
direct the Cas9 nickase to a specific target locus and encode
the desired edit. The process involves nicking the nontarget
DNA strand, priming reverse transcription using the pegRNA
extension as a template, incorporating the desired edit into the
newly synthesized strand, and biasing cellular DNA repair to
replace the unedited strand with the edited strand. Multiple
examples of in vivo gene editing using PEs have been
documented.84

Gene editing agents can be introduced into cells through the
delivery of pDNA or mRNA to encode their expression, or by
directly administering proteins or RNPs. In vivo gene editing
therapies hold the potential to address the underlying causes of

Table 1. Overview of Genome and Editing Strategies and
Agents

Genetic
edit Edit type Reagents/Methods

DNA Stochastic indels Cas9/Cas12 nucleases (DSB)
PAM-distal transition
point mutations

Base editors (ABEs, CBEs)

PAM-proximal point
mutations

Cas9/Cas12 nucleases (HDR) Prime
editors

Small insertions Cas9/Cas12 nucleases (HDR) Prime
editors

Small deletions Cas9/Cas12 nucleases (HDR) Prime
editors

Large insertions Cas9/Cas12 nucleases (HDR/EJ) Cas
transposases/recombinases

Large deletions Cas9/Cas12 nucleases (HDR/EJ)
Chromosomal
translocations

Cas9/Cas12 nucleases (HDR/EJ)

RNA Transcript degradation Cas13 nuclease
Transcript point
mutations

RNA base editors (REPAIR/RESCUE)
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numerous genetic diseases if safe and effective target delivery
methods are provided.
4.2. CRISPR/Cas Delivery Strategy Based on LNP.

LNPs, initially designed and optimized for siRNA delivery,
have gained recognition in CRISPR/Cas-based therapies
where the cargo can be in the form of pDNA, mRNA, or
RNP (Table 2). The delivery of the Cas9/sgRNA complex as
an RNP complex is the most direct and rapid method for
introducing the CRISPR/Cas machinery into cells. This
approach is advantageous as it allows for transient expression,
thereby minimizing off-target events compared to the use of
DNA expression plasmids, due to the short intracellular half-
life of RNPs.86 The anionic nature of the RNP complex
facilitates its coassembly with cationic lipids to form RNP-
LNPs through electrostatic interactions. Furthermore, the
inclusion of single-stranded oligonucleotides can enhance the
stability of RNP-LNPs by increasing the negative charge
density of the cargo.11 However, the encapsulation of RNPs

into LNPs can be challenging due to the potential denaturation
of RNPs under acidic conditions. It can be addressed by
optimizing the formulation87 and the fabrication conditions
(including pH and flow rate ratio in the microfluidic device)11

to preserve the DNA cleavage activity of RNPs. SORT LNP
also enables RNP encapsulation under neutral conditions by
introducing permanent cationic lipid DOTAP into LNPs,
where the structural integrity and biological function of RNPs
are maintained.88 Alternatively, ionizable lipid with pKa above
6.0 can be utilized as the protonated lipid allowing RNP
encapsulation at pH 6.0.89 In addition to pH-responsive
ionizable lipids, bioreproducible lipids have been utilized to
formulate RNP-loaded LNPs as well, demonstrating low
toxicity and high efficiency.90

An alternative strategy for CRISPR-Cas therapy involves the
delivery of sgRNA and Cas9 in the form of mRNA, which also
exhibits a low off-target rate due to the transient and
nonintegrating nature of Cas9 expression.21 The delivery of

Table 2. continued
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Cas9 mRNA can produce a greater amount of protein
compared to the direct delivery of the Cas9 protein in
LNPs, potentially leading to higher potency.91 For example,
the use of bioreproducible LNPs for the delivery of Cas9
mRNA/sgRNA has higher genome knockout efficiency
compared to the Cas9/sgRNA RNP complex.92 Furthermore,
Cas9 mRNA, Cas9 protein, and sgRNA delivered by LNPs can
all be rapidly degraded in vivo, preventing long-term nuclease
exposure.93 Cas9 mRNA and sgRNA can be delivered by
different approaches, as they can be encapsulated in a single
nanoparticle (Cas9 mRNA-sgRNA-LNP) or delivered sepa-
rately (Cas9 mRNA-LNP and sgRNA-LNP). It was found that
administering sgRNA-LNP 6 h after Cas9 mRNA-LNP
maximized the therapeutic effects, since it allows enough
time for robust Cas9 protein expression.93 However, recent
studies have preferred the ‘one-pot’ strategy rather than the
separate delivery, where the two cargos are more likely to be
present in the same cell potentially result in higher in vivo
efficacy.
Meanwhile, the delivery efficacy can also be improved by

sgRNA modification, which will lead to higher indel rates when
codelivered with Cas mRNA.94 It is hypothesized that
modified sgRNAs exhibit increased nuclease resistance,
protecting them from degradation during Cas mRNA trans-
lation.19,94 Once sgRNA binds to the Cas protein to form an
RNP, the Cas protein can partially protect the sgRNA from
degradation.95 However, entrapping highly modified sgRNA in
the classic approach could result in poor encapsulation
efficiency due to the chemical environment change, and
promoting the ionic strength in the aqueous phase during LNP
fabrication could overcome this challenge.96

The HDR pathway, which requires an additional DNA
template delivered alongside Cas9/sgRNA, has the advantage
of causing fewer mutation errors. Anderson’s lab previously
combined viral and nonviral delivery methods to achieve HDR
in vivo, with the sgRNA/repair template encoded in AAV and
Cas9 mRNA delivered by LNP.97 The ’one-pot’ LNP delivery
strategy, where the ssDNA template is incorporated into LNP
together with RNP11 or Cas9 mRNA/sgRNA cargo,54,91

facilitates HDR as well. LNP platforms have also been
successfully applied in base editor deliveries exhibiting accurate
gene correction,55,66,98,100,106 and RNA editing, where a
CRISPR/Cas13d-based LNP therapy effectively suppresses
CTSL mRNA expression.99

4.3. LNP Delivery of CRISPR/Cas for Gene Therapy.
Given that many LNPs are intrinsically liver-targeted, they
have the advantage of delivering gene-editing agents to treat
hepatic diseases. For instance, CRISPR/Cas-LNP could target
PCSK9 gene for the treatment of familial hypercholester-
olemia98,100 and introduce indels into the Hepatitis B virus
(HBV) DNA to suppress chronic HBV.11,93 Liver-targeting
CRISPR/Cas-LNP system has achieved high editing efficiency
in vivo with minimal side effect. Delivery of ABE8.8 mRNA/
sgRNA by LNP in cynomolgus monkey observed about 90%
editing in PCSK9 splice-site adenine and 60% reduction in low-
density lipoprotein cholesterol.98 The therapeutic efficacy of
such liver-targeting treatments can provide durable genome
editing for up to one year in vivo, with the potential for
enhanced editing levels through repeated dosing.19

Combined with varied targeting delivery strategies, LNP-
based gene editing has also been explored in extrahepatic
tissue. Dan Peer’s group designed a tumor-targeting LNP
system by conjugating anti-EGFR to LNP through ASSET

technology, where the modified LNP intraperitoneally
delivered Cas9 mRNA/sgRNA to the tumor and achieved
82% editing in PLK1, effectively suppressing the tumor
growth.101 Siegwart’s group designed a specialized LNP
composed of three different nucleic acid cargos, with siRNA
enhancing tissue penetration by reducing extracellular matrix
stiffness and Cas9 mRNA/sgRNA editing the cancer-related
genes.102 Exploiting Lung SORT LNP technology in CRISPR/
Cas system has shown promise in the treatment of SARS-CoV-
299 and cystic fibrosis.54,55 HSC-targeting LNP has been
applied in ABE8e delivery for the treatment of sickle cell
disease, leading to the high therapeutic editing rate (88%) in
vitro, which significantly reduces the presence of sickled cells
after erythroid differentiation.66 IM delivery of LNPs allows for
the treatment of muscular diseases, as a low-immunogenic
LNP system has been developed for delivering Cas9 mRNA
and a pair of sgRNAs to skeletal muscle, offering a promising
therapeutic strategy for Duchenne muscular dystrophy.6

Though liver-targeting LNP gene therapy tends to exhibit
high targeting specificity,100 nonliver delivery systems could
take off-target genome editing in unintended cells raising safety
concern. For example, in the HSC-targeting LNP system, the
off-target liver editing was over 70%.66 Sago et al. developed an
approach decreasing the off-target liver editing, which delivers
siRNA and oligonucleotides via hepatocyte-targeted LNPs
before delivering Cas9 mRNA/sgRNA to the lung or spleen.
This approach silenced Cas9 mRNA and sgRNA in the liver,
reducing off-target hepatocyte indels while maintaining gene
editing efficiency in the lung or spleen.103 More research is
required in nonliver deliver systems to suppress off-target
delivery.
Nowadays, the CRISPR/Cas-LNP system has obtained great

success and several studies have moved into the clinic trail.
NTLA-2001, the first LNP-based CRISPR/Cas clinic trail
delivered by IV injection, was designed to treat transthyretin
amyloidosis by knockout misfolded transthyretin (TTR) gene
in hepatocytes.7 The study reported that the decrease of TTR
protein was detected in patient serum with only mild adverse
effects 28 days after single-dose treatment. NTLA-2002 used
CRISPR/Cas9 therapy to target KLKB1 for the treatment of
hereditary angioedema, leading to a reduction of total plasma
kallikrein protein of 95% in high dose group without observed
adverse events, and substantially decreased the frequency of
angioedema attacks in patients.8

5. LNP OPTIMIZATION GUIDED BY MACHINE
LEARNING

Machine learning techniques have significantly advanced
research in biology, medicine, and pharmaceuticals by
providing efficient alternatives to traditional experimental
screening methods.107 Unlike conventional approaches that
often involve labor-intensive, time-consuming, and resource-
demanding experiments, machine learning can handle high-
dimensional and complex nonlinear data, automatically
extracting key features from data sets. This capability allows
researchers to analyze existing information and predict optimal
outcomes, reducing reliance on extensive trial-and-error
experimentation. As a result, machine learning contributes to
faster, more efficient development processes while decreasing
costs.108

The application of machine learning in LNP research has
shown promise in improving drug delivery system develop-
ment. Researchers focused on engineering safe and effective
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LNP delivery systems primarily through the chemical
modification of lipids and the adjustment of component ratios.
However, the classical four-component LNP formulation can
result in over 1010 distinct testable variations,109 making the
empirical screening excessively costly and time-intensive. In
light of the application of machine learning in predicting and
designing biomolecule properties in recent years, researchers
have started to incorporate machine learning techniques in
LNP research. This approach not only improves the accuracy
of transfection efficiency predictions and refines nanoparticle
design for therapeutic purposes, but also significantly reduces
costs and shortens the development timeline.
A schematic representation of the research pipeline is

presented in Figure 3.110 This methodology encompasses
several key steps (take the study of Li et al.110 as an example):
(1) Data collection, which involves acquiring data on LNPs
formulated with 584 ionizable lipids from experimental
procedures for model training; (2) Feature extraction, focusing
on extracting the chemical features of the ionizable lipid of
each LNP; (3) Data partitioning, where the 584 LNP data
points are randomly divided into training and test sets, with the
training set utilized for model training and the test set for
assessing predictive accuracy and algorithm optimization; (4)
Model application, employing the trained model to screen an
extensive lipid library consisting of 40,000 lipids. This
screening predicts optimal ionizable lipids, with the corre-
sponding LNP delivery efficiency validated through in vitro and
in vivo experiments. This machine learning approach facilitates
the in silico screening of a vast molecular library, significantly
accelerating the identification of highly effective molecules,
such as ionizable lipids. This revolutionary methodology has
attracted huge attention in the pharmaceutical industry. For
instance, the biotechnology startup Mana.bio has introduced a
platform that integrates artificial intelligence with LNP design.
5.1. Data Preparation for Machine Learning in LNP

Research. The development of machine learning models for
LNP research is facilitated by training data sourced from both
wet-lab experiments and published papers. These data
encompass the characteristics of LNPs, biological factors, and
their corresponding potencies (e.g., transfection efficiency). To
address the limited availability of public data sets for LNP
research, innovative methodologies have been employed to
generate and expand data sources. High-throughput exper-

imental techniques have yielded substantial data sets in wet
laboratories, as Cheng et al. reported 1080 outcomes of
pDNA-LNP transfections across six different cell types,111 and
Li et al. tested the delivery efficiency of mRNA-LNP
formulated by 584 different ionizable lipids.110 In particular,
Ugi combinatorial chemistry allows the multiple bond
formation in a “one-pot” reaction, enabling the high-
throughput synthesis of a large batch of ionizable lipids112

and the formation of a vast and diverse molecular library.
These extensive data sets provide a foundation for training
machine learning models, where structure−activity relation-
ships could be learned which improves the prediction accuracy.
Additionally, the utilization of Ugi combinatorial chemistry
assisted by ChemAxon’s Marvin Suite with the Markush Editor
(Marvin 23.4.0) has also been instrumental in expanding a
virtual library.113 The library is composed of 60,000 chemically
diverse lipid structures with varied amine headgroups and alkyl
chains.
Literature-derived data sets serve as an effective supple-

mentary method, expanding the available data pool which
typically includes hundreds to thousands of samples. Notable
examples include a data set of 622 LNPs with detailed
transfection efficiency information,114 325 LNP formulations
designed for mRNA vaccine,115 and an extensive data set of
2332 samples composed of analogous ALC-0315 and SM-
102.116 Different data, derived from both experimental and
published sources, is essential for training and fine-tuning
machine learning models. However, it is important to
acknowledge that potential biases may arise when curating
databases based on published studies, as transfection
efficiencies from different studies may not be directly
compared comprising the prediction accuracy. Data collected
from wet-lab are more comparable due to the controllable
experiment condition.117

5.2. Feature Presentation and Extraction in Machine
Learning-Based LNP Studies. In the realm of machine
learning-based LNP research, feature design is frequently
contingent upon expert knowledge to enhance interpretability.
These features delineate the molecular and structural
characteristics of LNPs, encompassing a spectrum from
atomic-level details to intricate molecular arrangements.
They are essential for accurately modeling and forecasting
the behavior and efficacy of LNPs. Table 3 encapsulates the

Figure 3. Overview of machine-learning guided LNP design.
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key features typically employed in such machine learning-
driven LNP investigations.

A detailed comprehension of the interplay between features
and LNP behavior is essential for the advancement of more
potent and secure delivery systems. In scenarios where data is
scarce, expert knowledge assumes particular significance, as it
bolsters the reliability and accuracy of predictive models. The
integration of deep learning techniques for feature extraction
with expert-informed features significantly amplifies the
model’s capacity to discern patterns and get insights from
data.113

While expert knowledge-driven features play an important
role in describing key LNP attributes, automated feature
extraction methods are becoming increasingly important as
data scales grow and molecular structures become more
complex. Molecular descriptors such as SMILES (Simplified
Molecular Input Line Entry System) and ECFP (extended-
connectivity fingerprints) can automatically capture complex
molecular structure information, providing rich input features
for machine learning models. Molecular descriptors are
essential tools that transform complex molecular structures
into numerical forms that can be processed by machine
learning models. In LNP research, using molecular descriptors
allows for the automatic extraction of a wide range of structural
features, reducing the reliance on manual feature engineering.
SMILES is a linear notation system for representing chemical
structures.113 It encodes the atoms and bonds of a molecule
into a string based on specific rules, allowing efficient
processing of complex molecular structures by computers.
Widely used in cheminformatics and machine learning,
SMILES notation enables straightforward parsing and trans-
formation into molecular graphs, where nodes represent atoms
and edges represent bonds, supporting tasks like molecular

property prediction.118 ECFP descriptors are radial molecular
fingerprints that capture local structures and connectivity
within molecules.115 ECFP works by iteratively recording
information about each atom and its neighbors to generate a
fixed-length numerical vector, effectively reflecting the
structural characteristics of the molecule. Open-source
cheminformatics tools such as RDKit can be used to process
molecular descriptors, converting them into graph-based
representations with nodes and edges that can be utilized for
further model processing and learning. SMILES strings can be
processed by RDKit to produce molecular representations,
which are then transformed into atom graphs, providing the
structural foundation for machine learning models to capture
complex relationships between molecular structures and their
biological activities.
For small-size data sets, expert knowledge-based features

(often termed “expert fingerprints”) might be favored as
extensive research and experimentation have provided high
confidence and good interpretability, thereby enhancing
prediction accuracy. For larger data sets, deep learning-based
methods utilizing molecular descriptors (referred to as “neural
fingerprints”) could be superior. Molecular descriptors have
the potential to discover features that may not be easily
captured by expert-driven approaches, learning more complex
feature representations and effectively handling large-scale
data. Combining molecular descriptors with expert features can
complement each other to enhance the model’s predictive
power. For representation learning of LNP chemical
information, molecular descriptors generated using identifiers
like SMILES and ECFP are crucial for capturing and analyzing
molecular structural features at a granular level, thereby
enhancing the understanding of LNPs. This combined
approach highlights the synergy between domain expertise
and advanced pattern recognition capabilities, ultimately
improving the predictive accuracy and reliability of machine
learning models in LNP research.
5.3. Machine Learning Models in LNP Research.

Multiple machine-learning models have been utilized to
predict LNP delivery potency, demonstrating the versatility
of computational techniques in this intricate field. These
models are primarily based on supervised learning, trained
using labeled data to predict specific LNP properties, such as
transfection efficiency. Supervised learning is well-suited for
tasks where there is a clear relationship between known
features and labels.
Widely used machine learning models include Support

Vector Machines (SVM), Random Forest algorithms,
XGBoost, and Light Gradient Boosting Machine (LightGBM).
SVMs, leveraging multiple kernel functions, are particularly
effective for smaller data sets with high-dimensional features,
allowing for the identification of optimal separating boundaries
between classes. Random Forest algorithms are well-known for
their capacity to handle high-dimensional data and capture
complex nonlinear relationships among features providing
feature importance rankings. XGBoost has used an ensemble of
boosted trees to significantly enhance predictive accuracy,
especially in handling imbalanced data sets. Similarly, decision
tree-based models like LightGBM have also shown strong
performance across various studies.104,111,119 LightGBM is
outstanding for its efficient handling of data sets, achieving
accurate prediction with high computing speeding. MLPs,
optimized with techniques like Adam, are also employed to
learn complex mappings between input features and LNP

Table 3. Typical Expert Features in Machine Learning-
Based LNP Studies

Feature Description

Atomic Types and
Positions

Types and positions of atoms within a molecule, are
foundational for understanding molecular composition.

Bond Types,
Lengths, and
Angles

Characteristics of chemical bonds are essential for
defining molecular structure and geometry.

Lipid Tail Length
and Structure

Tail length and structure of ionizable lipids, influencing
stability and efficacy.

LNP Component
Ratios

Ratios of components in LNPs are crucial for structural
and functional integrity.

Functional
Groups

Specific groups of atoms are responsible for characteristic
chemical reactions.

Ring Structures The presence and types of ring structures are significant
for molecular stability and reactions.

Headgroup
Structure

Specifics of ionizable lipid headgroup, affecting
interaction with mRNA and transfection efficiency.

Ester Bonds Positions and numbers of ester bonds within ionizable
lipid molecules, influencing stability and
biocompatibility.

Double Bonds Influence of double bonds on molecular flexibility and
reactivity.

Hydrophilicity
and
Hydrophobicity

Determination of molecular position in amphiphilic
environments.

Surface
Modifications

Target ligand modifications affecting LNP potency and
biodistribution.

Encapsulation
Efficiency

Efficiency of LNP to encapsulate nucleic acid cargo
affecting stability and release rate.

Cell Lines Types of cell lines used in in vitro experiments.
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properties. In machine learning models, especially in regression
tasks, commonly used loss functions include Mean Squared
Error (MSE) or Mean Absolute Error (MAE), as exemplified
in the study conducted by Cheng et al.111 These loss functions
are used to measure the difference between the model’s
predicted values and the actual values, thereby guiding the
training and optimization of the model.
Furthermore, the exploration of deep learning models

represents a cutting-edge direction in LNP research. Multilayer
Perceptrons (MLP), optimized using techniques such as
Adam, are often employed as foundational models for learning
complex mappings between input features and LNP properties.
MLPs serve as a fundamental starting point in the application
of deep learning, providing a straightforward yet powerful
framework for approximating intricate relationships. Building
on these foundational approaches, more sophisticated models
based on Graph Neural Networks (GNN) have also been
explored for their capability to capture the structural
complexities of molecules. For instance, Li’s group utilized
the Graph Isomorphism Network (GIN) as an effective graph
encoder to extract intricate features from molecular graphs.110

GIN’s proficiency in elucidating molecular structures through a
nuanced understanding of nodes and edges highlights its
applicability in domains requiring a comprehensive grasp of
molecular configurations. In this work, GNNs were employed
to extract molecular structural features of lipids, followed by an
average pooling layer applied to each lipid molecular graph to
produce a 512-dimensional lipid representation. This repre-
sentation was then mapped to a 256-dimensional latent space
using a single hidden layer MLP. Additionally, molecular
descriptors calculated using Mordred120 (over 1,000 common
descriptors, including atom counts, bond counts, etc.) were
mapped to a 100-dimensional latent vector through another
MLP. These vectors were concatenated with the 256-
dimensional lipid representations from the GNN encoder to
form the final input feature vector. In the model pretraining

phase, contrastive learning was adopted to learn a general
representation of lipids by optimizing a contrastive loss
function. The model parameters were initialized using the
MolCLR model,121 which was pretrained on over 10 million
small molecules, providing a “warm start” and enhancing the
model’s learning capacity. After pretraining, the model was
fine-tuned with an additional MLP, optimizing the loss
function to improve predictive performance. During the
contrastive learning stage, a contrastive loss function was
used to learn LNP representations by contrasting positive data
pairs against negative pairs. In the fine-tuning stage, MSE was
used as the loss function for training, while Root Mean
Squared Error (RMSE) was used for validation.
The vast search space presented by the chemical and

compositional diversity of LNPs highlights the complexity
involved in their design and optimization.111,119 Deep learning
models (GNNs in particular) have shown potential for
predictive modeling in LNP research, yet they often rely on
large and well-balanced data sets, which are scarce and
frequently imbalanced in this domain. Few-shot learning could
address these limitations, enabling effective model performance
with limited data, while its adaptation to LNP applications is
still evolving. In addition, many high-performing machine
learning models operate as “black boxes” while the patterns
driving the accurate predictions are still unclear.
5.4. Application of Machine Learning in LNP Systems.

Machine learning models have exhibited high prediction
accuracy across various LNP systems which could be employed
to screen the optimal LNP formulation in silico, and it can also
effectively analyze feature importance and provide guidelines
for LNP design, verifying the suitability of machine learning
technique in LNP research (Table 4). Ouyang’s group
compiled LNP formulations and corresponding IgG or HAI
titers from published literature to construct a machine-learning
model for mRNA vaccine optimization.115 The model’s
predictions were validated through in vivo testing. They also

Table 4. Machine Learning Applied in Varied LNP Systems

LNP system Training data source
Machine learning

model Validation Application Ref

mRNA-LNP
vaccine

Published paper (325 samples) LightGBM In vivo Predict the IgG titer of mRNA-LNP vaccine; 115
Feature importance ranking and analysis.

siRNA-LNP Published paper (129 in vitro formulations and
301 in vivo formulations)

LightGBM In vitro Predict the gene-knockdown efficiency of siRNA-LNP; 122
Feature importance ranking and analysis.

mRNA-LNP Published paper (2332 formulations across 14
publications)

LightGBM In vitro Predict the potency of LNP formulated by novel ionizable
lipid

116

Published paper (622 formulations) SVM; In silico Predict the transfection efficiency of LNPs 114
Random forest;
XGBoost;
MLP

Virtual library (60000 lipids for self-supervised
pretraining) & Wet-lab (1200 formulations
for supervised fine-tuning)

Deep learning model In vitro
and in
vivo

Present an AI-Guided Ionizable Lipid Engineering (AGILE)
platform; Select the high-potent ionizable lipid for muscle
injection and macrophage delivery

113

Wet-lab (584 formulations) Random forest; Logis-
tic regression;
XGBoost

In vitro
and in
vivo

Select the high-potent ionizable lipid; 110
Feature importance ranking and analysis

pDNA-LNP Wet-lab (180 formulations for 6 cell types) Multiple linear regres-
sion;

In silico Predict the transfection efficiency of LNPs; Feature
importance ranking and analysis

111

Lasso regression;
Partial Least Squares
regression;

k-Nearest Neighbors
Decision Trees;

Random Forest;
XGboost; LightGBM
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applied machine learning to siRNA-LNP systems, where the
model identified LNP dosage as the most critical feature
influencing gene silencing performance both in vitro and in
vivo.122

It has been observed that machine learning models can
predict the performance of newly designed ionizable lipids not
present in their training databases. The preferred physico-
chemical features of LNPs are found to vary across different
cell types. Lewis et al. developed an ionizable lipid library
consisting of analogs of SM-102 and ALC-0315, using a trained
machine-learning model to predict transfection efficiency.116

The predicted performance of novel ionizable lipids by the
algorithm aligned with experimental results in the HEK293T
cell line but not in A549. They also discovered that the tail
length of ionizable lipids was the most influential chemical
feature affecting mRNA transfection efficiency. AI-Guided
Ionizable Lipid Engineering (AGILE) platform rapidly
screened a pool of 12,000 novel ionizable lipids, where high-
performance lipids selected from this process were tailored for
IM injection and macrophage delivery.113 It also found that for
ionizable lipids, the headgroup structure significantly impacted
LNP performance in HeLa cells, while the tail structure was
the primary determinant of potency in RAW 264.7 cells. LNPs
formulated with these selected high-performance ionizable
lipids exhibited increased in vitro transfection efficiency and
reduced off-target delivery compared to the benchmark MC3
lipid. Li et al. trained a machine learning model and screened a
library of 40000 ionizable lipids in silico, where they selected
the optimized ionizable lipid 119−23 exhibiting the out-
performed delivery efficiency in vitro and in vivo compared to
SM-102 and MC3 when formulating LNP.110 With the
assistance of Ugi combinatorial chemistry, machine learning
might be employed to expertly develop the high-potent
ionizable lipid with the lowest time cost.

6. CONCLUSION AND FUTURE PROSPECTS
The four-component LNP system has gained significant
attention in gene therapy, offering potential for both disease
treatment and prevention. Clinically advanced LNP formula-
tions have shown efficient and safe delivery of nucleic acid
payloads, facilitating repeat dosing over extended periods.
Future iterations of LNP formulations are expected to enhance
clinical performance further, with improvements anticipated in
transfection efficiency and delivery specificity. The use of LNPs
as carriers for CRISPR/Cas in gene therapy has been
increasingly successful, with some studies progressing to
clinical trials. However, the majority of CRISPR/Cas-lipid
LNP systems are designed for liver and lung targeting, which
leaves the targeting specificity for nonliver tissues compara-
tively lower. The specificity of nonliver-targeted LNP systems
could be enhanced by curbing the undesired accumulation in
the liver and by exploring novel targeting tissues beyond the
liver and lung. This optimization may involve the development
of innovative lipid formulations and a deeper understanding of
the biodistribution patterns of LNPs in vivo. Integrating LNP-
based CRISPR/Cas delivery with strategies for nonliver
targeting is anticipated to expand the reach of gene editing
therapies.
Machine learning holds significant potential to assist in the

design and optimization of a variety of LNP systems. The
application of machine leaning in LNP design could be
hindered by the complex molecular structure, as large models
require substantial computational resources. These challenges

can be overcome by optimizing data-efficient techniques,
enhancing model interpretability, and exploring scalable
solutions. Leveraging large models with expert fine-tuning
could combine general knowledge with targeted precision in
LNP applications. Techniques such as generative models and
diffusion-based approaches offer flexible frameworks support-
ing the innovation of LNP formulation.
While several studies have successfully employed trained

machine learning models to predict the efficacy and assess the
importance of various features, the application of machine
learning in identifying optimal LNP formulations remains
scarce. Concurrently, machine learning-based research has
predominantly concentrated on enhancing delivery efficiency,
with less emphasis on other critical aspects such as
immunotoxicity and targeting specificity. It is important to
broaden the scope of machine learning applications in LNP
development to include a comprehensive evaluation of safety
and targeting precision alongside efficiency.
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